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Abstract—This paper considers numerical methods for approximating and simulating the Stokes—
Darcy problem, with a new boundary condition. We study a robust stabilized fully mixed dis-
cretization technique. This method ensures stability of the finite element scheme and does not use
any Lagrange multipliers to introduce a stabilization term in the temporal Stokes—Darcy problem
discretization. A correct finite element scheme is obtained and its convergence analysis is done.
Finally, the efficiency and accuracy of these numerical methods are illustrated by different numerical
tests.
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1. INTRODUCTION

In this article, we focus on the study of fluid flow in different domains and different physical situations,
for example, coupling of groundwater and surface flows, which is coupling of both surface and subsurface
flows. This model is described with the Stokes—Darcy equation. This relationship is provided by the
Stokes—Darcy linear equations with a contact interface. The Beavers and Joseph interface conditions
in the Stokes—Darcy model, which have become a most important topic in research, can be found
in [9—11]. Saffman modified this interface condition in [7, 40]. This model arises in the hydrology,
particularly, in groundwater flows, and in modeling of reservoirs in petroleum engineering. It is also used
for describing many natural and industrial phenomena in biomedicine and industrial processes [1, 7].

In different approximations, the Stokes—Darcy equations differ. A lot of effort and many techniques
have been applied in this connection to conduct numerical simulations (see [2, 3, 7, 33, 35, 44, 45]).
During the last decades, study of this problem has received a lot of attention, in particular related to a flow
in porous media In this case, there are several ways to define error estimators for these Stokes equations
by using the residual equation (see [2, 24]). Solving the Stokes equations and Navier—Stokes equations
governing a steady flow of viscous incompressible fluid can be found in [7, 28, 29]. These works laid
the basic foundation for approximation of coupled Navier—Stokes equations. In [17], Cao, Gunzburger,
He, and Wang investigated decomposition methods for a steady-state Stokes—Darcy system. A locally
conservative numerical method was applied to investigate coupled free and porous flow media in [23],
where the discontinuous Galerkin finite element method was applied to the Stokes region and the mixed
finite element method was used for the Darcy domain. A study with different cavities on the microscopic
scale using the Stokes model equations and the finite element method was performed by Arbogast et al.
in [4]. In [35], decoupled schemes for a non-stationary model were investigated. The unified stabilized
method was studied by Burman et al. [14]. Pearson, Pestana, and Silvester applied the refined saddle-
point preconditioning technique in [37] . Camano, Gatica, Oyarzta, Ruiz-Baier, and Venegas [16] used
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FINITE ELEMENT METHOD FOR THE STOKES—DARCY PROBLEM 137

new fully-mixed finite element methods for the coupled Stokes—Darcy equations. The reader can find
more works on the mixed formulation in[12, 16].

The rest of this paper is organized as follows. In Section 2, we give a short description of the
Stokes—Darcy fluid flow model with the Beavers—Joseph interface conditions. In Section 3, we give
some notations and the variational formulation for our problem. The numerical scheme for the model
is presented in Section 4. The stabilized finite element method and its stability will be discussed in
Section 5. The proof of our main result, i.e., error estimation for the coupled schemes, and analysis
of the finite element scheme are given in Section 6. Finally, in Section 7, we present 2D numerical tests
to show the accuracy of the numerical methods.

2. THE MODEL PROBLEM

[t is of interest for us to consider a model that couples subsurface water and surface flows via
the Stokes—Darcy equations. Using these equations, we can model different domains and physical
situations to simulate realistic problems. These problems are presented by partial differential equations,
coupled in the interface.

Let Qf and ©, be two bounded domains of R? (d = 2,3), lying on both sides of an interface T,
where Q; N Q, =0, 2, NQ, =T, and Q2 UQ, = Q. Note that ny and n,, are the unit outward normal
vectors on 02y and 02 p,respectively; (7;)i=1,... ¢—1 are the unit tangent vectors to I', I'y = 0Q#\I" and
Iy = 0Q,\I" (see Fig. 1). To address the problem mentioned above, let n, = —ny. Let us make clear

some notations that are introduced in this section and will be used in the remaining of this paper. Recall
that V and V- are the gradient and divergence operators, respectively.

2.1. The Stokes Equation

Let us(z) be the fluid velocity, p(x) the pressure, and 2 a positive constant of viscosity. Consider the
following Stokes model:

—V2uuf+Vp:f in Qy, (1)
V-uy=0 in Qp,
with a new boundary condition
Cup:Puy+ (Vpup —pl)ny = gy. (2)

Here f(z) € (L*(2))?, gf(z) € (L3())?, p(x) € L*(2), and B is a non-zero bounded continuous
function defined onI'y. C), 5 will be called the Dirichlet condition it 3 > 1 and the Neumann condition
if 3 < 1.

0Qy
Q
an 4 T P an
Np
Q M
an an
0Qyp

Fig. 1. Problem domain 2, consisting of fluid region ¢ and porous medium region €2, separated by interface I'.
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138 MOUTEA et al.
2.2. The Darcy Equations

A porous media flow is governed by the following Darcy equation on €, at the fluid velocity w, (z)
and the piezometric head h (x):

u, = —KVh in Q,, ()
Veou,=f, in Qp,

with the boundary condition
Up =Ny = gp on I'p. (4)

In this case, f,(z), g,(z) € L*(Q), and the piezometric head h(z) is an element of L?(2).

We introduce the following notation: f denotes the body forces in the fluid region, f, is the source
region in the porous media, K is the hydraulic conductivity tensor, p is the viscosity of the fluid, and « is
a constant parameter. Assume that all material and fluid parameters are uniformly positive and bounded
and K is a symmetric positive matrix. Then

0< kmin‘d2 < K C ' C < kmax|<|2 < oo for all C € (R)d
2.3. Interface Coupling

In this part, we consider the well-known Beavers—Joseph interface condition on the interface I (see
[8, 13] for more details):

Up Ny +up-ng=>0 on I
p—pung Vuyg-ng = pgh on T, (5)
—ng-Vuyp- -7, = \/T'O'lKT'uf'Ti on I,

with 1 <4 < d — 1. Equations (5) is a simplification of the more unconventional and realistic Beavers—
Joseph conditions, where wuy - 7; is replaced by ((uy — ) - 7;) (see also [6]).

3. NOTATIONS AND THE VARIATIONAL FORMULATION

In this section, we first introduce some results about Sobolev spaces (see[1, 43]). Assume || - || is the
usual L2-norm for functions defined on €5 or ,,, which is set as follows:

lp|| = p|? for all p € L*(Qy),
f{
d 12 é d
Jog]| = Z/iv? for all vy € (L2 (2))". (6)

=g,
d 12 é d

HVUfH = Z/|Vu} for all vy € (L2 Q)"
=gy,

and (-, -) is the corresponding inner product over the interface T', as follows:

NUMERICAL ANALYSIS AND APPLICATIONS Vol. 13 No.2 2020



FINITE ELEMENT METHOD FOR THE STOKES—DARCY PROBLEM

(poa) = /p- qdr.
r
Let Hy;, be the space of vector fields H(£,) with components in (L?(£2,))%:

Hyy = H(div,2,) = {0, € (L3(2))": Vv, € (L3())'}

We are in position to introduce (following [4, 13]) the spaces

Xy = (H§ Q)"
Qr=1q€L’(y), [q@)dz=0,
/

QP = L2 (Qp) 9
X, = {vp € Hyiy, Vv, -np =g} .
The spaces Xy and X, are equipped with the following norms:

1
[oplle = (logl + [Vogl))2 for all vy & X,

1
[pllaiv = (lupll + [IVvp[)2 for all v, € X,

139

(10)

The variational formulation of steady-state Stokes—Darcy problems (1)—(3) with new boundary
conditions (2) and (4) can be written as follows: Find (ug,p;up, h) € (X5, Q; Xp, Qp) that satisly the

following conditions:

{a’f (Uf,?)f) _bf (vfap) +cr ('Uf,h) = Lf (vf)a
by (ug,q) =0
forall (vf,q) € Xy x Qf and

{ ap (up; Up) = by (vp, h) = er (vp, h) =0,
bp (up, Q;[)) = P9 (f;m Q)[))
forall (vp, 1) € X, x Qp, where

af (ug,vp) = a1 (ug,vp) +ar (ug,vy),
d—1

a
ar (u ,v):,u/Vu -Vuy + (ug-m,vf-7),
£ f / f f;Wi_KTifzfz

ar (uyf,vy) Z/ﬁUf'vf,
T

vap) = (pvv'vf)v

p
bp (UZH h) = pPg (h7 V- Up) 3

Ly (vy) = (fr,vp) + /gf -vf,
I

NUMERICAL ANALYSIS AND APPLICATIONS Vol. 13 No.2 2020
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140 MOUTEA et al.
in the sense that

L (ufvpvupv h;’Uf,q,Up,?,[)) =ar (ufvvf) - bf (vap) + bf (uf7Q)
+ ap (up, vp) — by (vp, 1) + by (up, ¥) + cr (vf —vp, h).

Equations (11) and (12) are equivalent to the following:

(13)

L(ufvpvupvh;vf7Q7Upvw) = pPg (fp,w) +Lf (Uf) (14)
for all (vg,q;vp,¥) € (X, Qf; Xp, Qp) -

[t is easy to check that (14) is uniquely-defined (see [21, 45]).

Recall also the Poincaré, Korn, and trace inequalities, which will be used in the next section: there
exist constants Cp, Ck, and C, that depend only on the spaces and are such that forall vy € Xy

{Find (up,piup, h) € (Xyr,Qy; Xp,Qp) that satisfy

[vs]| < Crlogly, (15)
[oly < Ce| [V, (16)
and for all vy € L? (T),
1 1
o7l ooy < Colvrli o] (17)

Similarly, there exist constants C,, that depend only on 1, and are such that for all ¢ € @,

190l oy < oIl [0 (18)

Hereafter, all the constants are positive unless otherwise specified.

4. NUMERICAL SCHEME

Consider a family of triangulations 7}, = T,{ U Ty for Q = QfUQ, separated by the interface T,
where T,{ and T} are regular triangulations of Qf and ,,respectively. For uniformly regular triangu-

lation, 2 = |J K and there exist positive constants ¢; and ¢z such that
KeTy,

cith < hg < capk

for approximation of the diameter hx of the triangle (tetrahedral) K and the diameter pg of the ball
included in K, where h is a positive parameter defined as h = max hg.
E€Lp

From the parts T}{ and T}’;, for T, we define finite element spaces Xy, C Xy, Q’}h C Qf, Xpn C X,

and Qpn, C Q. We also consider the well-known MINI elements (P1b—P1) to approximate the velocity
and pressure in the Stokes equation (see [44]). The fully mixed technique uses Lagrangian elements P1
for the hydraulic (piezometric) head and Brezzi—Douglas—Marini piecewise constant finite elements
BDMI for the Darcy velocity (see [45]). For the Stokes problem in the fluid flow region, we select
finite element spaces (Xyp,, Q) that satisfy the ini—sup condition: there exists a constant 3¢ >0
(independent of h) such that

by (v, "
inf sup f( d hH) > By (19)

qhle}uqh?éO 'UIJ}LEth,'U];#O ‘U?‘l Hq
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FINITE ELEMENT METHOD FOR THE STOKES—DARCY PROBLEM 141

for all v}’ € Xyp, and q" € Q rh-
In the porous region, we use finite element spaces (X5, Qp) that satisfy the standard ini—sup
condition: there exists a constant 3, > 0 such that for all = Qph

bp(vl,q")
Bpllg"| < sup hp

' (20)
oheXpmwnzo [03]ldiv

From assumption (19) and for an arbitrary (but fixed) pressure p” in Qfn, we get a function w? in
X1, such that

by (wh.#") = Culfu] 1" (21)

where w}‘ is normalized as Hw?Hl =\ thH We have

by (wlh o) = Gl (22)

Similarly, from assumption (20) and for h" € Qph, we get that there exists wf; € X,y such that

by (. 1) = Colluwls |, 11" (23)
By normalizing it so that Hw;deiv = )\thh| , we have
h ph h||2
by (whs 1) = Co | (24)

Finally, there exist two constants Cjy, and Cinv depending on the minimum angles of the mesh in Q2
and €, such that

[v}], < Ciavh ™ ||V}]] for all v € Xy, (25)
[4"], < Cuwh™H [0 for all ¥" € Qp. (26)

These inequalities in X ¢y, and @y, will be useful in the sections below.

5. STABILITY OF THE METHOD

In this section, we will mostly work with the stabilized finite element scheme for our problem, in the
sense that

Find (u?,ph;uz,hh) € (Xsn, Qsn; Xph, Qpn) satisfying
L (o s, 50 "ol ) = pg (f ") + Ly (0) (27)
for any (U?vqh7vngh) € (thvah;Xpthph)7
where
L (ufhp" up 0t o) = L (ol b5 o ol )

0 (=) g (v = o) o),
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142 MOUTEA et al.

The stabilization term for the Stokes—Darcy problem is

Pt e () ) = 8 L) ) (oot ) e

r

In order to prove the stability of finite element scheme (27), let us define the norm

[ s ) = Ly 12+ el + 1™+ B [ =

and prove the continuity and coercivity of problem (28).
(i) Continuity of the stabilized finite element scheme.

Theorem 1. There exists a constant C such that

L (o, 05 o i) < O ([, ) ([ o 1)
holds for all (v?,qh, g,wh) € (Xsn, Qsn, Xph, Qph)-

Proof. By using Schwartz inequality (18) and inverse inequality (25) for ap (u?, v?), we have

ar (uf,vf) < G|}

where C; = —2 02 C,. This ensures that

mv

a (whv}) < (04 Co) [[uf |4
Similarly, for er (u? — uz, hh) and i ((u? — u;ﬁ) “ny, (v? - v{j) 'nf>r, we obtain
er (uf =, h") < G5 | (1 —uh) -l [I1"]]
where Cy = pg CinyCl and

D (ol =) g, (=) mg), < (] (ulh =) gl (=0 ) )

Now we can use (31)—(33) in

E(U?,p 7up7hh vf qhavgﬂ h> =ar <uf7vf> bf (vf p ) +bf <u?’qh>

(29)

(31)

(32)

+ay (uh vh) — by, (vp,hh) + by (u;’,zl)h) +cr (v}’ — vg, hh) (34)

o (=) g (o = ot) ),

to complete the proof of the continuity of the stabilized finite element scheme.
(ii) Coercivity of the stabilized finite element scheme.

Theorem 2. There exists a constant 3 > 0 such that the inequality
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.Z/(U?,p 7up7hh vf7q ) p7¢h>
sup

i > B[ ot BE||(35)
(“;‘,th;”,hh)E(th,th;Xmeph) ‘va,q 7,Up7,¢} H‘

holds for all (v?,qh, f;,wh) € (Xtn, Qfny Xph, Qph)-

Proof. In this proof we construct (v;}, Q"o 1[)h) such that

I~J<ul}7p 7up7hh Uf) Ahv ngh) > C(‘Hufvp ) p)hhHD (‘H,va ] ’ Z)Qph ) (36)
For the sake of clarity we divide the proof into steps.
Step 1. Setting (vf,q , g,hh> = <u?,p ,up,hh—i—V U ) we obtain

RS A ) I3 PR 7/ [ -

ol = e (uf = ).

We have
ag(uf,ul) > Cllull|[|ul]
L(ult, ph,ult, bl ult, ph ol + 5 - al) > Ol a]|? + [|ul |5 (38)

1)
0 a2+ e ).

[t is easy to see that

er (i 1) 2 =IO () g2 T,

where « is a real positive parameter defined below.

Step 2. Let (v?, g" o W) = (- ny;L, 0,—yW}',0), where Wh and W) satisfy (23) and (24), respec-

tively. One can see that, based on the definition || (Wf wr) - anF = >\3H uf —ul) gl HWf
)\3HUI}HF and the fact that (21)—(24) hold true, we have

I

- 'y)\ Y2 ~C
L{ulp,p" s, b =y W0, =9 W0) = =) Sl =52 [l g 0]+

) p7
75>\3

Iy
+’YC2HhhH = NG = )

Apf%qm
’ hCy H( —UZ) 'ani’

where § is a real parameter defined in the next step.
Let us use the following two Young properties:
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Y 02

l (39)

YA
Mol [0l <57 Nl +

and

YN3p2g2C2C2 7C!
PO Cond | (o~ ) o) < 77ty 27
For ar (u’}, vi}) we have the following estimate:
0 < ar (uf,of) = [lufllp < Con™2Ju| [} (40)

where Cy = 02 Chy.

mv
Step 3. Denote ({)f,q , z}},hh) ( uy —vw?,ph,ug —yw’g,wh +V'u;,}) and L" = E(u’},ph,uz,hh;
f Wwf,p ,up Wwp,zbh+v U ).Then

~ 22 02012nv ,Y)\2 ’YC ’yC
o= <1 “a0, T hey > sl + (1 - 202> el + 5 0"+ 0

1—qXs  pPg?C2CE,  y\3p?gPC2C2, h h| |2
' (5 h YhCy T hCh I

(41)

Now we can ensure that the conditions on v and ¢ are true by using

2
= AT U1 A2 1 1
1-C — > 1-— > 1—~yX\3>
! iy — 2’ Cy 2’ A8 =

L=\s _ p2PCRCE,  Np*?CRCE, 6

v v v inv

h 7h02 hCs = o

We use the parameters « and § (where v is small and § is large enough):

. Cy 20, Cfnvcl 20y 1

222
4P gfyglz)cmv (1 +,Y2)\2)

5

6>

We obtain

~ A2 C’C’mv Y2 2 ~C ~C:
B2 (1= g =G Y sl (1= 002 Yl + 75 I+ 75

(5 VX3 20202 YA2p2g2C2C

v T 1nv

A e L

> C4H ‘u?7ph7u27

=yl p =y 4+ V|
= Clf p", s B ||| [, 5" i, 4"

This concludes the proof of this theorem. O
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6. ERROR ESTIMATE
Now we can derive the error estimate. This estimate is based on the continuity and coercivity of the

stabilized finite element scheme.

) p?
and HhH are bounded norms. We have

Theorem 3. Let (uy,p,up, h) be the exact solution and (u?,p ul hh) be the stabilized finite

element solution;

.
s = willy + o = P+ lup = wpll g, + (|2 = B*]| < Ch,

for all (ufvpvupv h) € (Xf7Qf7Xp7Q;D) and (ul}vph7u];7 hh) € (thvathpthph)'

Proof. By subtracting (27) from (14) and using the first equation in (5) on the interface, we define the
error equation as follows:

L(’LLf pvupvh Uf7q s p7¢h) (uf7p 7up7hh Uf7q s p7¢h)
:f/(uf,p,up,h;v?,q ¢h> (ufap 7up7hh vf q 7vp71/}h> (42)

:E(Uf—uy,p_ph,up u h hh Uf7q ) p7¢h) =0.

In the view of the interpolation (u,p, @y, h) of the solution (us,p, up, h) from (X, Qy, Xp, Qp) into
the finite element spaces (Xyp,, Q r4, Xph, @pn), We can split the errors into two parts:

uf —u? = (uy —uy) + (ﬂf —u?) =éf — e?, (43)
h h) _ = h
p—p'=({p—p) — (p—p)—n—n, (44)
h — — h) _ = h
Up — p—(up—up)+<up—up)—ep—ep, (45)
and
h=h" = (h=h) + (h=n") =0 —0". (46)

The interpolation errors are determined as follows:

leslly + Nl < Ch (llurll, + lpll,) (47)
18]l + 16]} < Ch (upll, + [|1],) - (48)

We can see that
f/<€]}7n 76279h Uf7q ) pﬂ/fh)——L(ef nvepvevf7q ) pﬂ/fh) (49)

From the continuity condition in Theorem 1, the coercivity of L in Theorem 2, and the trace and inverse
inequalities, we have
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L (e? el 0ol gt o, wh)
sup

ool 1o a" o w2 ]

IN

Bllef . ey, 0]

_-Z/ (éf7 777 épa §7 'U;L, qh7 'U;L, T/Jh)

B | AR | 5
< Cllles.m e, 0]l
< (el + 1l + l1epllg, + 191 + 221127 = )
< C(lleslly + llall + llepll gy + 161 + 2727 = ellr)
< Ch([[uglly + llplly + [lully + [1A]],) -
Finally, from the interpolation error, we deduce estimate (42). O

7. NUMERICAL EXPERIMENTS

In this section, we present results of a numerical experiment based on the mixed finite element
method, presented in this article, with application of the simulator Comsol Multiphysics. This simulator
using many solvers. In this numerical test we use the MUMPS solver to illustrate the accuracy
and efficiency of this method. We consider a global domain © = [0, 1] x [-0.45,0.15] of numerical
computations for a coupled system, with a fluid flow region ©; = [0, 1] x [—0.45,0] and porous medium
domain 9 = [0,1] x [0, 0.15]. The interface in the computational domain is I" = [0, 1] x {0}.

For the numerical test we take the physical parameters given in Table 1 and the Stokes equation
boundary conditions defined as follows:

Cup: (Vpup —pl)ng = 0.

An injection source pu, - n, = 1000K g/s is placed in the middle left-hand corner of the reservoir and

an injection source pu,, - n, = 0 Kg/s is in the outlet in the top right-hand corner of the domain . The
Darcy boundary value problem is defined as follows:

up - nyp = 0.
The velocity and the pressure for this problem are calculated using a normal mesh (Fig. 2). We made
a comparison with a numerical test with very fine mesh.

Figure 3 illustrates the velocity for our example with a normal mesh and very fine mesh.

Figure 4 shows pressure contours in the fluid flow region with a normal mesh and very fine one.
Figure 5 demonstrates pressure contours in porous medium with a normal mesh and very fine one.

To investigate the effect of mesh on the error and convergence of finite element scheme, we perform
several numerical tests with different mesh size (Fig. 6).

Table 1. Physical parameters of governing equations

Parameter Value Unit
Mass density 1000 kg/m?3
Dynamic viscosity 1 Pa-s
Permeability 0.5 m?
Porosity 0.1 1
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0.15 1 X
0.05{ REREEas
—0.05{ RERER
—0.151 K¢
—-0.251 K[>
—0.35

—0.45' \/

Fig. 2. Normal mesh of domain 2.

Velocity loop with normal mesh
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Velocity loop with very fine mesh
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Fig. 3. Velocity contour with using mixed finite element method.

Pressure contour with normal mesh

0.15

0.05
—0.05
—0.15
—0.25
—0.35
—0.45

141.01x10*
| fos8
| 110.6
0.4
0.2
0
| 1-0.2
v—2025

{

0 02 04 06 08 1

—0.05
—0.15
—0.25
—0.35
—0.45

Pressure contour with very fine mesh
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Fig. 4. Pressure contour in €4 with using mixed finite element method.

Pressure contour with normal mesh
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Pressure contour with very fine mesh
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—0.15
—0.25
—0.35
—0.45

A101x10°
1.01x10°

. . I Mo
06 08 1 w101x10°

0.4

0 02

Fig. 5. Pressure contour in Q2 with using mixed finite element method.

Table 2 presents different characteristics of the meshes: number of elements and max size and min
size of elements.

Now, we will present the variation of the error as a function of the number of iterations for a normal
mesh (Fig. 7). To investigate the effect of mesh on the error and convergence for the finite element
scheme, we perform several numerical tests at different mesh sizes (see the figures). In these simulations,
we use the MUMPS solver, which is very useful for solving large sparse linear systems.
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Fig. 7. Error vs. number of iterations for normal mesh.
Table 2. Characteristics of meshes
Mesh Number of elements  Maximum element size  Minimum element size
Very coarse 306 0.67 0.002
Coarse 487 0.1 3.0F—14
Normal 892 0.053 1.60F — 4
Fine 1331 0.037 1.25FE — 4
Very fine 2267 0.0266 1.01FE —4

Figure 8 presents the variation of the error as a function of the number of iterations for the mesh

presented in Fig. 3.

Figures 7 and 8 show that if the mesh is small, the number of iterations to obtain a good solution is

less.

Table 3 presents the errors for our problem on different meshes. Let the error Erru = ||u — u”|,
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Fig. 8. Error vs. number of iterations for different meshes (Fig. 3.)

Table 3. Errors for the velocity and pressure equations

Numbers of elements Erru Errp
306 0.0013 0.00047
487 0.0011 0.00038
892 0.0008 0.00029
1331 0.00053 0.0002
2267 0.00053 0.00018

where u is the velocity in the fluid flow region, and Errp = Hp — thO , Where v is the pressure in the
porous medium.

Table 3 shows the efficiency of this method; when the mesh is fine enough, the error approaches zero.

8. CONCLUSIONS

In this paper, we investigated application of the mixed finite element method to solve the Stokes—
Darcy model with a new boundary condition. In this study, we used discretization of mixed finite element
methods to analyze the stability and convergence. We proposed a stabilized finite element scheme. To
ensure robustness, we introduce a stabilization term of the temporal discretization. To show the feature of
this scheme and the numerical methods, we performed a numerical test on another mesh and compared
the results. The numerical test has shown the accuracy and efficiency of the proposed mixed finite
element method.
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