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Abstract. In this work, a numerical solution of the incompressible Navi-
er-Stokes equations is proposed. The method suggested is based on an
algorithm of discretization by mixed finite elements with a posteriori er-

ror estimation of the computed solutions. In order to evaluate the per-
formance of the method, the numerical results are compared with some
previously published works or with others coming from commercial code
like Adina system.

1. Introduction

In modeling flow in porous media, it is essential to use a discretization
method which satisfies the physics of the problem, i.e., conserve mass locally
and preserve continuity of flux. The Raviart-Thomas Mixed Finite Element
(MFE) method of lowest order satisfies these properties. Moreover, both the
pressure and the velocity are approximated with the same order of convergence
[10], [8]. The discretization of the velocity is based on the properties of Raviart-
Thomas. Other works have been introduced by Brezzi, Fortin, Marini, Dougla
and Robert [30], [28], [8]. This method was widely used for the prediction of
the behavior of fluid in the hydrocarbons tank.

We were interested in the resolution of the incompressible Navier-Stokes
equations in two dimensions on the fields where the numerical problem is well
posed with boundary conditions and other aspects of the problem. A dis-
cretization by quadrangular finite elements is used. Two iterative methods are
used to solve the not-symmetrical discrete system of the Navier-Stokes equa-
tions. The biconjugate gradients stabilized method (BICGSTAB) and minimal
residual generalized method (GMRES) given in [13], [20]. The technique of
preconditioning of the linear systems of big sizes is used to reduce the time of
convergence of the iterative methods. This technique of preconditioning has
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allowed us to accelerate the convergence of the iterative methods independently
of the Reynolds number and the number of meshes. Moreover, the methods of
Picard or Newton are used to solve the non-linear algebraic systems resulting
from the discretization.

In the conforming case, there are several ways to define error estimators
by using the residual equation. In particular, for the Stokes problem, M.
Ainsworth and J. Oden [2], D. Kay and D. Silvester [23], C. Cartensen and
S. A. Fuken [9] and R. Verfurth [31] introduced several error estimators and
provided that they are equivalent to the energy norm of the errors. Other
works for the stationary Navier-Stokes problem have been introduced in [27],
[32], [22], [34], [1], [26], [3].

Section 2 presents the model problem used in this paper. The discretization
by mixed finite elements is described in Section 3. Section 4 shows the methods
of a posteriori error bounds of the computed solution. Numerical experiments
carried out within the framework of this publication and their comparisons
with other results are shown in Section 5.

2. Incompressible Navier-Stokes equations

We consider the steady-state Navier-Stokes equations for the flow of a New-
tonian incompressible viscous fluid with constant viscosity:

(2.1)

{
−ν∇2−→u +−→u .∇−→u +∇p =

−→
f ,

∇.−→u = 0,

where ν > 0 is a given constant called the kinematic viscosity.
−→u is the fluid velocity, p is the pressure field, ∇ is the gradient and ∇. is

the divergence operator.
The boundary value problem that is considered is the system (2.1) posed

on two or three-dimensional domain Ω, together with boundary conditions on
∂Ω = ∂ΩD

∪
∂ΩN given by

(2.2) −→u =
−→
W on ∂ΩD, ν

∂−→u
∂n

−−→n p = −→
0 on ∂ΩN ,

where −→n denote the outward pointing normal to the boundary.
This system is the basis for computational modeling of the flow of an incom-

pressible Newtonian fluid such as air or water. The presence of the nonlinear
convection term −→u .∇−→u means that boundary value problems associated with
the Navier-Stokes equations can have more than one solution.

We define the spaces:

(2.3) ℏ1(Ω) = {u : Ω → R|u, ∂u
∂x
,
∂u

∂y
∈ L2(Ω)},

(2.4) H1
E = {−→u ∈ ℏ1(Ω)2|−→u =

−→
W on ∂ΩD},

H1
E0

= {−→v ∈ ℏ1(Ω)2|−→v =
−→
0 on ∂ΩD},(2.5)
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L2
0(Ω) = {q ∈ L2(Ω) :

∫
Ω

q dx = 0}.(2.6)

Then the standard weak formulation of the Navier-Stokes flow problem (2.1)
and (2.2) is the following:
Find −→u ∈ H1

E and p ∈ L2
0(Ω) such that

(2.7)

ν

∫
Ω

∇−→u : ∇−→v +

∫
Ω

(−→u .∇−→u ).−→v −
∫
Ω

p(∇.−→v ) =
∫
Ω

f.−→v for all −→v ∈ H1
E0
,

(2.8)

∫
Ω

q(∇.−→u ) = 0 for all q ∈ L2
0(Ω).

Let the bilinear forms a : H1
E×H1

E −→ R, b : H1
E×L2

0(Ω) −→ R, d : L2
0×L2

0 −→
R, and the trilinear form c : H1

E ×H1
E ×H1

E −→ R

a(−→u ,−→v ) = ν

∫
Ω

∇−→u : ∇−→v ,(2.9)

b(−→v , q) = −
∫
Ω

q(∇.−→v ),(2.10)

d(p, q) =

∫
Ω

p q,(2.11)

c(−→z ;−→u ,−→v ) =
∫
Ω

(−→z .∇−→u ).−→v .(2.12)

Let the subspace of divergence-free velocities be given by

VE0 = {−→z ∈ H1
E0

;∇.−→z = 0 in Ω}.(2.13)

Which induces the norms

∥−→v ∥a = a(−→u ,−→u ) 1
2 ∀−→u ∈ H1

E0
,(2.14)

∥q∥d = d(q, q)
1
2 ∀q ∈ L2

0(Ω).(2.15)

Lemma 1. Let a(., .) and b(., .) be the bilinear forms given by (2.9) and (2.10),
respectively, and let c(., ., .) the trilinear form given by (2.12). Then

|a(−→v ,−→w )| ≤ ∥−→v ∥a∥−→w ∥a, ∀−→v , −→w ∈ H1
E0
,(2.16)

|b(−→v , q)| ≤
√
2∥−→v ∥a∥q∥d, ∀(−→v , q) ∈ H1

E0
× L2

0(Ω),(2.17)

sup
−→v ∈H1

E0

b(−→v , q)
∥−→v ∥a

≥ α∥q∥d, ∀q ∈ L2
0(Ω),(2.18)

c(−→z ;−→u ,−→v ) ≤ β|−→z |1,Ω |−→u |1,Ω |−→v |1,Ω, ∀−→z , −→v ∈ H1
E0
.(2.19)



532 ABDESLAM ELAKKAD, AHMED ELKHALFI, AND NAJIB GUESSOUS

The convection term is skew-symmetric: c(−→z ;−→u ,−→v ) = −c(−→z ;−→v ,−→u ) over VE0 ,
this mean that

c(−→z ;−→u ,−→u ) = 0 ∀−→z ∈ VE0 .(2.20)

Proof. The proof follows from classical results in [18]. □

We define

∥
−→
f ∥∗ = sup

−→v ∈VE0

(
−→
f ,−→v )
∥∇−→v ∥

.(2.21)

Then a well-known (sufficient) condition for uniqueness (see [18, Theorem 2.2])
is that forcing function is small in the sense that

∥
−→
f ∥∗ ≤ ν2

β∗
,(2.22)

where β∗ is the best possible constant such that (2.19) holds.

Theorem 1. Assume that ν and
−→
f ∈ L2(Ω)2 satisfy the following condition:

|(
−→
f ,−→v )Ω| ≤ γ

ν2

β
|−→v |1,Ω, ∀−→v ∈ H1

E0
(2.23)

for some fixed number γ ∈ [0, 1). Then, there exits an unique solution (−→u , p) ∈
H1

E0
× L2

0(Ω) of (2.7)-(2.8) and it holds

|−→u |1,Ω ≤ γ
ν

β
.(2.24)

Proof. See Theorem 2.4, Chapter IV in [18]. □

3. Mixed finite element approximation

Our goal here is to consider the stationary Navier-Stokes equations with
mixed boundary conditions (the Dirichlet boundary condition on a part of
the boundary ∂ΩD and the Neumann one on the remaining part ∂ΩN ) in a
two-dimensional domain and to approximate them by a mixed finite element
method.

Mixed finite element discretization of the weak formulation of the Navier-
Stokes equations gives rise to a nonlinear system of algebraic equations. Two
classical iterative procedures for solving this system are Newton iteration and
Picard iteration.

Let τh, h > 0, be a family of triangulations of Ω. We denote by hT the
diameter of a simplex T , by hE the diameter of a face E of T , and we set
h = maxT∈τh{hT }.

For any T ∈ τh we denote by ε(T ) and N(T ) the set of its edges and vertices,
respectively.

A discrete weak formulation is defined using finite dimensional spaces Xh
0 ⊂

H1
E0

and Mh ⊂ L2
0(Ω).
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Specifically, given a velocity solution spaces Xh
E ⊂ H1

E , the discrete version
of (2.7)-(2.8) is: find −→u h ∈ Xh

E and ph ∈Mh such that

(3.1) ν

∫
Ω

∇−→u h : ∇−→v h +

∫
Ω

(−→u h.∇−→u h).
−→v h −

∫
Ω

ph(∇.−→v h) =

∫
Ω

−→
f .−→v h,

(3.2)

∫
Ω

qh(∇.−→u h) = 0

for all −→v h ∈ Xh
0 and qh ∈Mh.

We define the appropriate bases for the finite element spaces, leading to a
non-linear system of algebraic equations. Linearization of this system using
Newton iteration gives the finite dimensional system: find δ−→u h ∈ Xh

0 and
δph ∈Mh such that

c(δ−→u h;
−→u h,

−→v h) + c(−→u h; δ
−→u h,

−→v h) + ν

∫
Ω

∇δ−→u h :

∇−→v h −
∫
Ω

δph(∇.−→v h) = Rk(
−→v h),

(3.3)

∫
Ω

qh(∇.δ−→u h) = rk(qh)

for all −→v h ∈ Xh
0 and qh ∈ Mh. Here, Rk(

−→v h) and rk(qh) are the non-linear
residuals associated with the discrete formulations (3.1) and (3.2).

To define the corresponding linear algebra problem, we use a set of vector-
valued basis functions {−→φ j}, so that

(3.4) −→u h =

nu∑
j=1

uj
−→φ j +

nu+n∂∑
j=nu+1

uj
−→φ j , δ

−→u h =

nu∑
j=1

∆uj
−→φ j ,

and we fix the coefficients uj : j = nu+1, . . . , nu+n∂ , so that the second term
interpolates the boundary data on ∂ΩD.

We introduce a set of pressure basis functions {Ψk} and set

(3.5) ph =

np∑
k=1

pkΨk, δph =

np∑
k=1

∆pkΨk,

where nu and np are the numbers of velocity and pressure basis functions,
respectively.

We obtain a system of linear equations

(3.6)

(
νA+N +W tB

B 0

)(
∆U
∆P

)
=

(
f
g

)
.

This system is referred to as the discrete Newton problem.
The matrix A is the vector Laplacian matrix and B is the divergence matrix

(3.7) A = [aij ], aij =

∫
Ω

∇−→φ i : ∇−→φ j ,
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(3.8) B = [bkj ], bkj = −
∫
Ω

Ψk∇.−→φ j

for i and j = 1, . . . , nu and k = 1, . . . , np.
The vector-convection matrix N and the Newton derivative matrix W are

given by

(3.9) N = [nij ], nij =

∫
Ω

(−→u h.∇−→φ j).
−→φ i,

(3.10) W = [Wij ], Wij =

∫
Ω

(−→φ j .∇−→u h).
−→φ i

for i and j = 1, . . . , nu. The Newton derivative matrix is symmetric.
The right-hand side vectors in (3.6) are the non-linear residuals associated

with the current discrete solution −→u h and ph.
(3.11)

f = [fi], fi =

∫
Ω

f.−→φ i −
∫
Ω

(−→u h.∇−→u h).
−→φi − ν

∫
Ω

∇−→u h : ∇−→φ i +

∫
Ω

ph(∇.−→φ i),

(3.12) g = [gk], gk = −
∫
Ω

Ψk(∇.−→u h).

For Picard iteration, we give the discrete problem(
νA+N tB

B 0

)(
∆U
∆P

)
=

(
f
g

)
.(3.13)

The lowest order mixed approximations like Q1−P0 and Q1−Q1 are unstable.
We use a stabilized element pair Q1−P0, this is the most famous example of an
unstable element pair, using bilinear approximation for velocity and a constant
approximation for the pressure.

We use two iterative methods for solving the nonsymmetric systems: The
generalized minimum residual method (GMRES) and BiConjugate Gradients
Stabilized Method (BICGSTAB) [13], [20].

Preconditioning is a technique used to enhance the convergence of an iter-
ative method to solve a large linear systems iteratively. Instead of solving a
system Λx = b, one solves a system P−1Λx = P−1b, where P is the precondi-
tioned. A good preconditioned should lead to fast convergence of the Krylov
method. Furthermore, systems of the form Pz = r should be easy to solve.

For the Navier-Stokes equations, the objective is to design a preconditioned
that increases the convergence of an iterative method independent of the Reyno-
lds number and number of grid points. We use a least-squares commutator
preconditioning [29], [16].

4. A posteriori error bounds

In this section we consider a posteriori error estimators for the stationary
Navier-Stokes equation. The estimator requires the solution of local Poisson
problems, and we derive a global upper bound for the error.
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Throughout this section we restrict attention to the simplest case of enclosed

flow with ∂Ω = ∂ΩD and
−→
W =

−→
0 .

Given the continuous functional l : H1
E −→ R, l(−→v ) =

∫
Ω

−→
f .−→v ; the un-

derlying weak formulation (2.7)-(2.8) may be restated as: Find −→u ∈ H1
E0

and

p ∈ L2
0(Ω) such that

(4.1)

{
a(−→u ,−→v ) + c(−→u ;−→u ,−→v ) + b(−→v , p) = l(−→v ) for all −→v ∈ H1

E0
,

b(−→u , q) = 0 for all q ∈ L2
0(Ω).

With a conforming mixed approximation, the corresponding discrete problem
(3.1)-(3.2) is given by: Find −→u h ∈ Xh

0 and ph ∈Mh such that

(4.2)

{
a(−→u h,

−→v h) + c(−→u h;
−→u h,

−→v h) + b(−→v h, ph) = l(−→v h) for all
−→v h ∈ Xh

0 ,

b(−→u h, qh) = 0 for all qh ∈Mh.

Our aim is to bound ∥−→u − −→u h∥X and ∥p − ph∥M with respect to the energy
norm for the velocity ∥−→v ∥X = ∥∇−→v ∥ and the quotient norm for the pressure
∥p∥M = ∥p∥0,Ω.

Let the symmetric bilinear form

(4.3) B((−→u , p); (−→v , q)) = a(−→u ,−→v ) + b(−→u , q) + b(−→v , p),

and introducing the functional F ((−→v , q)) = l(−→v ) associated with the forcing
term, we have that the errors −→e = −→u − −→uh ∈ H1

E0
and ε = p − ph ∈ L2

0(Ω)
associated with (4.1) and (4.2) satisfy

B((−→e , ε); (−→v , q)) = B((−→u −−→u h, p− ph); (
−→v , q))

= B((−→u , p); (−→v , q))−B((−→u h, ph); (
−→v , q))

= F ((−→v , q))− c(−→u ;−→u ,−→v )−B((−→u h, ph); (
−→v , q))

= − c(−→u ;−→u ,−→v ) + l(−→v )− a(−→u h,
−→v )− b(−→v , ph)

− b(−→u h, q)(4.4)

for all (−→v , q) ∈ H1
E0

× L2
0(Ω).

We note that

D(−→u h,
−→e ,−→v ) = c(−→e +−→u h;

−→e +−→u h,
−→v )− c(−→u h;

−→u h,
−→v )

= c(−→u ;−→u ,−→v )− c(−→u h;
−→u h,

−→v ).

We combine this with (4.4), we get

B((−→e , ε); (−→v , q)) +D(−→u h,
−→e ,−→v )

= − c(−→u h;
−→u h,

−→v ) + l(−→v )− a(−→u h,
−→v )− b(−→v , ph)− b(−→u h, q).

We define the stress jump across edge or face E adjoining elements T and S:

[[ν∇−→u h − ph
−→
I ]] = ((ν∇−→u h − ph

−→
I )|T − (ν∇−→u h − ph

−→
I )|S)−→n E,T ,

where −→n E,T is the outward pointing normal.
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We define the equidistributed stress jump operator

(4.5)
−→
R ∗

E =
1

2
[[ν∇−→u h − ph

−→
I ]],

and the interior residuals

(4.6)
−→
RT = {

−→
f + ν∇2−→u h −−→u h.∇−→u h −∇ph}|T ,

and RT = {∇.−→u h}|T , we find that the errors −→e ∈ H1
E0

and ε ∈ L2
0(Ω) satisfy

the non-linear equation

B((−→e , ε); (−→v , q)) +D(−→u h,
−→e ,−→v )(4.7)

=
∑
T∈τh

[(
−→
RT ,

−→v )T −
∑

E∈ε(T )

⟨−→R ∗
E ,

−→v ⟩E + (RT , q)T ]

for all (−→v , q) ∈ H1
E0

× L2
0(Ω).

The error characterization (4.7) is the starting point for a posteriori error
analysis. The crucial question here is to determine the best way of handling
the non-linear term on the left-hand side of (4.7). We note that

D(−→u h,
−→e ,−→v ) = c(−→e ;−→e ,−→v ) + c(−→e ;−→u h,

−→v ) + c(−→u h;
−→e ,−→v ).

The problem (4.7) can be approximated by the linear problem: find −→e ∈ H1
E0

and ε ∈ L2
0(Ω) such that

c(−→e ;−→u h,
−→v ) + c(−→u h;

−→e ,−→v ) + ν

∫
Ω

∇−→e .∇−→v −
∫
Ω

ε(∇.−→v )(4.8)

=
∑
T∈τh

[(
−→
RT ,

−→v )T −
∑

E∈ε(T )

⟨
−→
R ∗

E ,
−→v ⟩E ]−

∫
Ω

q(∇.−→e )

=
∑
T∈τh

(RT , q)T .

This system corresponds to a Newton linearization about the discrete velocity
solution −→u h. We shall concentrate on the stabilized Q1 − P0 or P1 − P0 ap-
proximation methods in two dimensions. Notice that for either of these low
order approximations, the divergence residual RT is piecewise constant and the

stress jump term
−→
R ∗

E is piecewise linear. The other element residual is given

by
−→
RT = {

−→
f −−→u h.∇−→u h}|T .

For each T ∈ τh let

VT = {−→v ∈ H1(T )×H1(T ) : −→v =
−→
0 on ∂Ω ∩ ∂T}.

We find −→e T ∈ VT satisfying the uncoupled poisson problems

ν(∇−→e T ,∇−→v )T = (
−→
RT ,

−→v )T −
∑

E∈ε(T )

⟨
−→
R ∗

E ,
−→v ⟩E for all −→v ∈ VT .

With εT = ∇.−→u h, the local error estimator is given by the combination of the
energy norm of the velocity error and the L2 norm of the element divergence
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error, that is

(4.9) η2T = ∥∇−→e T ∥2T + ∥εT ∥2T = ∥∇−→e T ∥2T + ∥∇.−→u h∥2T ,

and the global error estimator is

(4.10) η = (
∑
T∈τh

η2T )
1
2 .

We define a pair (
−→
Φ , ψ) ∈ H1

E0
× L2

0(Ω) to be the Ritz projection of the
modified residuals

(4.11) a(
−→
Φ ,−→v ) + d(ψ, q) = a(−→e ,−→v ) + b(−→e , q) + b(−→v , ε) +D(−→u h;

−→e ,−→v )

for all (−→v , q) ∈ H1
E0

×L2
0(Ω), where

−→e = −→u −−→u h, ε = p−ph and D(−→u h;
−→e ,−→v )

= c(−→u ;−→u ,−→v )− c(−→u h;
−→u h,

−→v ).
The problem (4.11) is equivalent to find (

−→
Φ , ψ) ∈ H1

E0
× L2

0(Ω) satisfying
(4.12)

a(
−→
Φ ,−→v )+d(ψ, q) = (

−→
f ,−→v )Ω−a(−→u h,

−→v )−b(−→u h, q)−b(−→v , ph)−c(−→u h;
−→u h,

−→v )

for all (−→v , q) ∈ H1
E0

× L2
0(Ω).

Next, we establish an equivalence between the norms of (−→e , ε) ∈ H1
E0

×L2
0(Ω)

and the norms of the solution (
−→
Φ , ψ) ∈ H1

E0
× L2

0(Ω) of (4.11).

Theorem 2. Let the conditions of Theorem 1 hold. There exist positive con-
stants K1 and K2, independent of h, such that

K1{∥
−→
Φ∥2a + ∥ψ∥2d} ≤ ∥−→e ∥2a + ∥ε∥2d ≤ K2{∥

−→
Φ∥2a + ∥ψ∥2d}.

Proof. First, note that using (2.19) and (2.24), we have that for −→v ∈ H1
E0

D(−→u h;
−→e ,−→v ) = c(−→u ;−→u ,−→v )− c(−→u h;

−→u h,
−→v )

= c(−→u ;−→e ,−→v ) + c(−→e ;−→u h,
−→v )

≤ β{|−→u |1,Ω |−→e |1,Ω |−→v |1,Ω + |−→e |1,Ω |−→u h|1,Ω |−→v |1,Ω}
≤ β{2|−→u |1,Ω |−→e |1,Ω |−→v |1,Ω + |−→e |21,Ω |−→v |1,Ω}
≤ β{2γ ν

β |
−→e |1,Ω |−→v |1,Ω + |−→e |21,Ω |−→v |1,Ω}

≤ {2γ + β
ν |
−→e |1,Ω} ∥−→e ∥a∥−→v ∥a.(4.13)

Furthermore, using (2.20) and following above steps closely it holds

(4.14) D(−→u h;
−→e ,−→e ) ≤ {γ +

β

ν
|−→e |1,Ω} ∥−→e ∥2a.

Next, the upper and lower bound are addressed separately.
Upper bound: From the equation (2.18) and setting q = 0 in (4.11), (2.16)

and (4.13), there holds

α∥ε∥d ≤ sup
−→v ∈H1

E0

b(−→v , ε)
∥−→v ∥a
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= sup
−→v ∈H1

E0

|a(
−→
Φ ,−→v )− a(−→e ,−→v )−D(−→u h;

−→e ,−→v )|
∥−→v ∥a

≤ ∥
−→
Φ∥a + {3 + β

ν |
−→e |1,Ω} ∥−→e ∥a.(4.15)

In addition, by picking q = 0 and −→v = −→e in (4.11) and using (4.14) we arrive
at

∥−→e ∥2a = a(
−→
Φ ,−→e )− b(−→e , ε)−D(−→u h;

−→e ,−→e )

= a(
−→
Φ ,−→e )− d(ψ, ε)−D(−→u h;

−→e ,−→e )

≤ ∥
−→
Φ∥a∥−→e ∥a + ∥ψ∥d∥ε∥d + {γ + β

ν |
−→e |1,Ω} ∥−→e ∥2a,(4.16)

and we gather (4.15) and (4.16) to obtain

∥−→e ∥2a ≤ 1

α
∥−→Φ∥a∥ψ∥d + ∥−→e ∥a{∥

−→
Φ∥a +

1

α
(3 + β

ν |
−→e |1,Ω) ∥ψ∥d}+

∥−→e ∥2a{γ + β
ν |
−→e |1,Ω}.(4.17)

We assume |−→e |1,Ω to be sufficiently small in a way that there exists ϵ > 0 such
that (see [27] for a related assumption)

(4.18) γ +
ϵ2

2
+
β

ν
|−→e |1,Ω = δ < 1.

The existence of such of ϵ along with the inequality xy ≤ ϵ2x2

2 + y2

2ϵ2 for all
x, y > 0, imply

∥−→e ∥2a ≤ 1

α
∥ψ∥d∥∥

−→
Φ∥a +

ϵ2

2
∥−→e ∥2a +

1

2ϵ2
{∥
−→
Φ∥a +

1

α
(3 +

β

ν
|−→e |1,Ω) ∥ψ∥d}2

+ {γ +
β

ν
|−→e |1,Ω}∥−→e ∥2a

=
1

α
∥ψ∥d∥

−→
Φ∥a + δ∥−→e ∥2a +

1

2ϵ2
{∥
−→
Φ∥a +

1

α
(3 +

β

ν
|−→e |1,Ω) ∥ψ∥d}2

≤ 1

2α
[∥ψ∥2d + ∥

−→
Φ∥2a] + δ∥−→e ∥2a +

1

ϵ2
{∥
−→
Φ∥2a +

1

α2
(3 +

β

ν
|−→e |1,Ω)2 ∥ψ∥2d}

≤ [
1

2α
+

1

ε2
] ∥

−→
Φ∥2a + δ∥−→e ∥2a +

1

α
{1
2
+

1

ϵ2α
(3 +

β

ν
|−→e |1,Ω)2} ∥ψ∥2d.(4.19)

Now, from the previous inequality and (4.18) we get

∥−→e ∥2a ≤ 1

1− δ
[
1

2α
+

1

ϵ2
] ∥−→Φ∥2a +

1

1− δ

1

α
{1
2
+

1

ϵ2α
(3 +

β

ν
|−→e |1,Ω)2} ∥ψ∥2a.

Finally, the upper bound follows from the above inequality and (4.15).

Lower bound: Taking −→v =
−→
Φ , and q = 0 in (4.11), and using (2.17) and

(4.13), it holds

∥
−→
Φ∥2a = a(

−→
Φ ,

−→
Φ)

= a(−→e ,−→Φ) + b(
−→
Φ , ε) +D(−→u h;

−→e ,−→Φ)
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≤ ∥−→e ∥a∥
−→
Φ∥a +

√
2∥
−→
Φ∥a∥ε∥d + {2γ +

β

ν
|−→e |1,Ω} ∥−→e ∥a∥

−→
Φ∥a

≤
√
2∥
−→
Φ∥a∥ε∥d + {3 + β

ν
|−→e |1,Ω} ∥−→e ∥a∥

−→
Φ∥a,

then,

(4.20) ∥
−→
Φ∥a ≤ {3 + β

ν
|−→e |1,Ω} ∥−→e ∥a +

√
2∥ε∥d.

Next, setting −→v = 0 and q = ψ in (4.11), and using (2.17), we end up with

∥ψ∥2d = d(ψ,ψ) = b(−→e , ψ) ≤
√
2∥−→e ∥a∥ψ∥a ≤ ∥−→e ∥2a +

1

2
∥ψ∥2d,

which implies

(4.21) ∥ψ∥2d ≤ 2∥−→e ∥2a.

Hence, we gather (4.20) and (4.21) to get

(4.22) ∥
−→
Φ∥2a + ∥ψ∥2d ≤ 2[1 + {3 + β

ν
|−→e |1,Ω}2] ∥−→e ∥2a + 4∥ε∥2d.

Finally, from the bound (4.18) for ϵ, the following inequality holds

3 +
ϵ2

2
+
β

ν
|−→e |1,Ω ≤ 4,

we obtain

(4.23) ∥−→Φ∥2a + ∥ψ∥2d ≤ 34{∥−→e ∥2a + ∥ε∥2d},

and the result follows. □

Remark. The auxiliar problem (4.11) is decoupled. In fact, if one set −→v =
−→
0

in (4.12), then the problem (4.11) becomes

(4.24) d(ψ, q) = −b(−→u h, q),

which leads to

(4.25) ψ = ∇.−→u h.

Hence, if we pick in the sequel the test functions (−→v , 0) in (4.12) we arrive at

(4.26) a(
−→
Φ ,−→v ) = l(−→v )− a(−→u h,

−→v )− b(−→v , ph)− c(−→u h;
−→u h,

−→v ).

Using integration by parts in (4.26) we arrive at

(4.27) ν(∇
−→
Φ ,∇−→v )Ω =

∑
T∈τh

[(
−→
RT ,

−→v )T −
∑

E∈ε(T )

⟨
−→
R ∗

E ,
−→v ⟩E ]

for all (−→v , q) ∈ H1
E0

× L2
0(Ω), where

−→
R ∗

E and
−→
RT defined in (4.5) and (4.6)

respectively.
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The local velocity space on each T ∈ τh is

VT = {−→v ∈ H1(T )×H1(T ) : −→v =
−→
0 on ∂Ω ∩ ∂T},

and the local pressure space is

QT = L2(T ).

Let the bilinear form bT : VT ×QT −→ R and the trilinear form cT : VT ×VT ×
VT −→ R :
(4.28)

b(−→v , q) =
∑
T∈τh

bT (
−→v , q), bT (

−→v , q) = −
∫
T

q(∇.−→v ), ∀q ∈ QT , ∀−→v ∈ VT ,

(4.29) cT (
−→z ;−→u ,−→v ) =

∫
T

(−→z .∇−→u ).−→v , ∀(−→z ,−→u ,−→v ) ∈ VT × VT × VT .

Similarly, lT : VT −→ R is defined by

(4.30) lT (
−→v ) =

∫
T

−→
f −→v , ∀−→v ∈ VT .

We introduce the stresslike tensor σ(v, q) formally defined to be

(4.31) σij(v, q) = ν
∂vi
∂xj

− qδij ,

where δij is the Kronecker symbol.

Let
−→
ΦT ∈ VT be such that

a(
−→
ΦT ,

−→v ) = lT (
−→v )− aT (

−→u h,
−→v )− bT (

−→v , ph)− cT (
−→u h;

−→u h,
−→v )

+

∮
∂T

⟨−→n T .σ(
−→u h, ph)⟩.−→v ds(4.32)

for all −→v T ∈ VT , where the boundary data are chosen to respect the equilibra-
tion condition,
(4.33)

0 = lT (r)− aT (
−→u h, r)− bT (r, ph)− cT (

−→u h;
−→u h, r) +

∮
∂T

⟨−→n T .σ(
−→u h, ph)⟩.rds,

where r is any constant flow field.
Then the error of the finite element approximation of the Navier-Stokes

equation (4.1) satisfies the following bound (See Theorem 5 in [27])

(4.34) ∥
−→
Φ∥2a + ∥ψ∥2d ≤

∑
T∈ τh

η2T ,

where

ηT = {∥∇
−→
ΦT ∥2T + ∥∇.−→u h∥2T }

1
2 .

Theorem 2 and (4.34) now yield the following a posteriori error estimate:
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Theorem 3. Let the conditions of Theorem 1 hold. There exists a constant
C > 0 such that

(4.35) ∥∇(−→u −−→u h)∥2 + ∥p− ph∥20,Ω ≤ C (
∑

T∈ τh

η2T ).

5. Numerical simulation

In this section, some numerical results of calculations with mixed finite el-
ement method and ADINA system will be presented. Using our solver, we
run two traditional test problems (driven cavity flow [14], [15], [6], [24], [20],
[17], [25], [21] and Backward-facing step problem [29], [19]) with a number of
different model parameters by increasing Reynolds number, and we discuss the
performance of our code.

The computational results have been computed using the IFISS software
from http://www.manchester.ac.uk/ifiss.

Example 1. Square domain, regularized cavity boundary condition.
This is a classic test problem used in fluid dynamics, known as driven-cavity

flow. It is a model of the flow in a square cavity with the lid moving from left
to right. Let the computational model: {y = 1;−1 ≤ x ≤ 1/ux = 1 − x4}, a
regularized cavity.

The streamlines are computed from the velocity solution by solving the
poisson equation numerically subject to a zero Dirichlet boundary condition.

We have solved the problem for three different Reynold’s numbers: 100,
600, and 2000. Fig. 2. Uniform streamline plot with MFE (left), and uniform
streamline plot computed with ADINA system (right) using Q1 − P0 approxi-
mation, 32× 32 square grid and Reynolds number Re = 600.

The solution shown in Figure 3 corresponds to a Reynolds number of 2000.
The particles in the body of the fluid move in a circular trajectory. Steady flow
in a two dimensional cavity is not stable for Reynolds number much greater
than 104. Indeed, we have made calculations for Reynolds number 104, in ad-
dition, our code does not converge because the turbulence phenomena is not
taken into account in our model. At a critical Reynolds number (approximately
13,000) the flow pattern develops into a time-periodic state with “waves” run-
ning around the cavity walls.

Table 1. Estimated errors for regularized driven cavity flow
using Q1−P0 approximation for the flow with Reynolds num-
ber Re = 100.

∥∇.−→u h∥Ω η
8× 8 8.704739e-002 1.720480e+000
16× 16 3.115002e-002 1.084737e+000
32× 32 9.545524e-003 5.919904e-001
64× 64 2.676623e-003 3.160964e-001
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Figure 1. Uniform streamline plot with MFE (left), and uni-
form streamline plot computed with ADINA system (right) us-
ing Q1−P0 approximation, a 32×32 square grid and Reynolds
number Re = 100.

Table 2. CPU time in seconds for the different approxima-
tions with various coarse meshes.

Q1 − P0 Q1 −Q1 Q2 −Q1 Q2 − P1

8× 8 1.2344 0.9375 1.1406 1.2188
16× 16 1.8281 1.2813 1.7031 1.7188
32× 32 4.3281 3.1250 3.5938 4.1094
64× 64 18.7656 15.4688 23.2969 26.1250

Figure 7 shows the iteration counts for GMRES and Bicgstab with least-
squares commutator preconditioning, for linear systems arising from Newton
iteration applied to the driven cavity problem with Q1−P0 approximation and
Re = 100.
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Figure 2. Uniform streamline plot with MFE (left), and uni-
form streamline plot computed with ADINA system (right)
using Q1−P0 approximation, 32×32 square grid and Reynolds
number Re = 600.

Some computed errors are given in Table 1 to show the effect of grid refine-
ment in this case. These results, together with the bound (4.35), suggest that
the Q1 − P0 approximation is converging to the exact flow solution at close to
optimal rate, that is O(h).

Example 2. L-shaped domain Ω, parabolic inflow boundary condition, natural
outflow boundary condition.

This example represents flow in a rectangular duct with a sudden expansion;
a Poiseuille flow profile is imposed on the inflow boundary (x = −1; 0 ≤ y ≤ 1),
and a no-flow (zero velocity) condition is imposed on the walls.

The Neumann condition (5.1) is applied at the outflow boundary (x =
5;−1 < y < 1) and automatically sets the mean outflow pressure to zero.

(5.1)

{
ν ∂ux

∂x − p = 0
∂uy

∂x = 0
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Figure 3. Uniform streamline plot with MFE (left), and uni-
form streamline plot computed with ADINA system (right) us-
ing Q1−P0 approximation, a 32×32 square grid and Reynolds
number Re = 2000.

The two solutions are therefore essentially identical. This is very good indi-
cation that our solver is implemented correctly.

Table 3. Estimated errors for Backward-facing step problem
using Q1−P0 approximation for the flow with Reynolds num-
ber Re = 200.

∥∇.−→u h∥Ω η
8× 24 3.916e-002 8.945e+000
16× 48 1.352e-002 5.433e+000
32× 96 4.629e-003 3.353e-001
64× 192 1.583e-003 2.143e-001

There are two sets of streamlines at equally spaced levels plotted in Figure
8; one set is associated with positive streamfunction values and shows the path



AN A POSTERIORI ERROR ESTIMATE 545

Figure 4. Velocity vectors solution by MFE (left) and Veloc-
ity vectors solution computed by ADINA system (right) with
a 32×32 square grid for the flow with Reynolds number Re =
100.

Figure 5. Velocity vectors solution by MFE (left) and Veloc-
ity vectors solution computed by ADINA system (right) with
a 32×32 square grid for the flow with Reynolds number Re =
600.

of particles introduced at the inflow. These pass over the step and exit at
the outflow. The second set of streamlines is associated with negative values
of the streamfunction. These streamlines show the path of particles in the
recirculation region near the step; they are much closer in value, reflecting the
fact that recirculating flow is relatively slow-moving.

If L is taken to be the height of the outflow region, then the flow pattern
shown in Figure 8 corresponds to a Reynolds number of 200. If the viscosity
parameter were an order of magnitude smaller, then the steady flow would be



546 ABDESLAM ELAKKAD, AHMED ELKHALFI, AND NAJIB GUESSOUS

Figure 6. Velocity vectors solution by MFE (left) and Veloc-
ity vectors solution computed by ADINA system (right) with
a 32×32 square grid for the flow with Reynolds number Re =
2000.
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Figure 7. Iteration counts for GMRES and Bicgstab with
least-squares commutator preconditioning.

unstable. The singularity at the origin is an important feature of the flow even
in the convection-dominated case.

6. Conclusion

In this work, we were interested in the numerical solution of the partial differ-
ential equations by simulating the flow of an incompressible fluid. We applied
the mixed finite element method to the resolution of the Navier-Stokes equa-
tions. Also, we proposed methods of the estimation of error for the calculated
solution.
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Figure 8. Equally spaced streamline plot associated with a
32× 96 square grid Q1 − P0 approximation for ν = 1/100.

Figure 9. The solution computed with ADINA system. The
plots show the Streamlines associated with a 32 × 96 square
grid, approximation for ν = 1/100.

Figure 10. Velocity vectors solution by MFE with a 32× 96
square grid for the flow with ν = 1/100.

Numerical experiments were carried out and compared with satisfaction with
other numerical results, either resulting from the literature, or resulting from
calculation with commercial software like Adina system.
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Figure 11. The solution computed with ADINA system. The
plots show the velocity vectors solution with a 32× 96 square
grid for the flow with ν = 1/100.
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