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2Département de mathématiques
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Abstract

In this work, we approximate the steady Brinkman equations with

a new boundary condition. We derive an adequate variational formu-

lation to approach this problem by using MFE methods. We use a

general block diagonal preconditioner to obtain a faster convergence.

To control the error, we use two types of a posteriori error indicator

equivalent to the true discretization error.

1 Introduction

This paper describes a numerical solution of steady Brinkman equations with
a new boundary condition. This model describes the flow of fluid in complex
porous media or two different situations porous/free flow media, this equa-
tion is presented and published by H.C. Brinkman in [14, 15]. We use the
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boundary condition generalizes the known conditions, especially the Dirich-
let and the Neumann ones. We discretize this coupled partial differential
equations by mixed finite element (MFE) method [23]. This lineair problem
is a saddle point problem, a wealth of literature exists to treat much of it
related events to particular applications. Perhaps the most popular work is
[7], which considers assumptions under which the matrix formulation will be
solvable and the authors use block diagonal preconditioners is focus on linear
algebra. For the uniqueness of solution can be found in [7] or, in the substan-
tial area of PDEs, in [10, 11]. Brinkman problems also arise in a natural way
when the (unsteady), Stokes equations and Darcy law are coupled and sim-
plified using classical operator splitting techniques [24]. Thus, the Stokes or
Darcy equations can be obtained by suitable choices these parameters µ∗ and
K in (2.1) by defining them in vugular and rock matrix regions, respectively
[19]. A posteriori error analysis in FEM received a lot of attention during the
last decades. For the conforming case see [4, 5]. In the specific case of the
Brinkman equations see [4] laid the basic foundation for the mathematical
analysis of practical methods.

The plan of the paper is as follows. In the next section we present the
model problem, and we present the discretization by FE method in section 3.
A general block diagonal preconditioners for Brinkman problems is described
in section 4. Section 5 shows the methods of a posteriori error estimator of
the computed solution.

2 Governing equations

In this section, we define the governing equation where the unknown functions
−→u is the fluid velocity, p is the pressure field, satisfying





−µ∗∇2−→u +∇p+ µK−1−→u =
−→
f in Ω

∇ · −→u = 0 in Ω
A

−1−→u + (∇−→u − pI)−→n = −→g in Γ =: ∂Ω,

(2.1)

where Ω ⊂ R
2 is an idealized, bounded, connected domain. The parameters

µ∗ is the effective viscosity (is only a parameter allows for matching the shear
stress boundary conditions across free fluid or porous medium interface [16])
and µ is the physical dynamic viscosity that defines the fluid under consid-
eration (e.g., water, oil, etc.). K (resp A) is a permeability tensor, which
is equal to the Darcy permeability in a porous media (resp the boundary).
Distinguish two special cases for the Brinkman equation (2.1), by choosing
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µ∗ ≃ 0 in a region or it is known that for moderately very small permeabil-
ity and pore fractions i.e. K

−1 >> 1 this equation is reduced to Darcy’s
law, on the other hand by choosing Kij or very large i.e. Kij −→ ∞ this
equation is reduced to the Stokes equations and can be taken this equality
µ∗ = µ, see e.g. [19]. We propose study this problem with this new bound-
ary condition where the vector −→n denote the outward pointing normal to the

boundary. The functional
−→
f in the space [L2(Ω)]2, the functional −→g in the

space [L2(Γ)]2, the unknowns is the pressure function p defined in the space
L2(Ω) satisfy

∫
Ω
p dx = 0 and the velocity vector −→u . We Assume that there

exist a positive constant numbers a1, a2 > 0 such that

a1ζ
tζ ≤ ζ tK−1ζ ≤ a2ζ

tζ, ζ ∈ R
2 (2.2)

and A
−1 is a nonzero continuous matrix such that ∃c1, c2 > 0 such that

c1ζ
tζ ≤ ζ tA−1ζ ≤ c2ζ

tζ, ζ ∈ R
2 (2.3)

where ζ is understood as a column vector and ζ t is the transpose of ζ . Before
presenting the weak formulation of this problem we set these spaces V =
(H1

0 (Ω))
2 and W = {q ∈ L2(Ω) :

∫
Ω
q(x)dx = 0}. To simplify this study we

define a : V × V −→ R, b : V ×W −→ R and d : W ×W −→ R.

a(−→u ,−→v ) =
∫

Ω

µ∗∇−→u .∇−→v dx+
∫

Ω

µK−1−→u .−→v dx+
∫

Γ

A
−1−→u .−→v , (2.4)

b(−→v , q) = −
∫

Ω

(q∇.−→v )dx, d(p, q) =

∫

Ω

p q dx. (2.5)

These inner products induce norms on the space V by ‖·‖V and for the space
W denoted by ‖ · ‖W respectively.

‖−→u ‖V = a(−→u ,−→u ) 1

2 ∀−→u ∈ V, ‖q‖W = d(q, q)
1

2 ∀q ∈ W. (2.6)

It is simple to see that the norm ‖ · ‖V is both equivalent to H1(Ω) norms
and (H1(Ω), ‖ · ‖V ) is a real Hilbert space. For the second member we given
the continuous functional l : V −→ R

l(−→v ) =
∫

Ω

−→
f .−→v dx+

∫

∂Ω

−→g .−→v dx. (2.7)

By summing the all, the weak formulation of the Brinkman problem (2.1) is
then, find (−→u , p) ∈ V ×W such that

{
a(−→u ,−→v ) + b(−→v , p) = l(−→v )
b(−→u , q) = 0,

(2.8)
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for all (−→v , q) ∈ V ×W .

It is well known that under the assumptions (2.2)-(2.3) the bilinear form
a(·, ·) is positive continuous coercive. The bilinear form b(·, ·) is continuous
and satisfies the inf − sup condition [17] and the linear function l(·) is con-
tinuous. Then the problem (2.8) is well-posed and have only one solution
[11].

3 Finite element method

The goal of this section is to introduce a mixed finite element algorithm to
approximate our problem. Let P be a regular mesh in the sense as defined
in [2] of our domain Ω in 2D into the union of N subdomains K verify that
• N <∝,
• Ω = ∪K∈PK,
• K ∩ J is empty whenever K 6= J ,
• each K is a convex Lipschitzian domain with piecewise smooth boundary
∂K.
The common boundary between subdomains K and J is denoted by: ΓKJ =
∂K ∩ ∂J . For any K ∈ P , ωK is of rectangles sharing at least one edge with
element K.
We let εh = ∪K∈P ε(K) denotes the set of all edges split into interior and
boundary edges, εh = εh,Ω ∪ εh,Γ,
where εh,Ω = {E ∈ εh : E ⊂ Ω} and εh,Γ = {E ∈ εh : E ⊂ ∂Ω}.

We construct the usual manner finite element subspaces of these spaces V
(respW ) noted by Xh (respMh) and so that the inclusion Xh×Mh ⊂ V ×W
holds. Now, we define the MFE approximation to (2.8)
Find (−→u h, ph) ∈ Xh ×Mh such that

{
a(−→u h,

−→v h) + b(−→v h, ph) = l(−→v h)
b(−→u h, qh) = 0,

(3.9)

for all (−→v h, qh) ∈ Xh ×Mh. The system (3.9) we can rewrite as a square
matrix problem where the unknowns is these vectors U and P . to define
these vectors we use a set of vector-valued basis functions {−→ϕ j}, so that

−→u h =

nu∑

j=1

uj
−→ϕ j +

nu+n∂∑

j=nu+1

uj
−→ϕ j, (3.10)
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and we fix the coefficients uj : j = nu+1, ..., nu+n∂ , so that the second term
interpolates the boundary data on ∂ΩD . For the pressure basis functions
{Ψk} and set

ph =

np∑

k=1

pkΨk, (3.11)

where nu and np are the numbers of velocity and pressure basis functions,
respectively. We obtain a system of linear equations that U and P have to
satisfy

(
A BT

B 0

)(
U

P

)
=

(
F

0

)
. (3.12)

The matrix A is defined by

A = [aij ], aij =

∫

Ω

µ∗∇−→ϕ i : ∇−→ϕ j +

∫

Ω

µK−1−→ϕ i.
−→ϕ j +

∫

∂Ω

A
−1−→ϕ i.

−→ϕ j,(3.13)

and the divergence matrix B is defined by

B = [bkj ], bkj = −
∫

Ω

Ψk∇.−→ϕ j , (3.14)

for i and j = 1, ..., nu and k = 1, ..., np . The right-hand side vector F in
(3.12) is

F = [Fi], Fi =

∫

Ω

−→
f .−→ϕ i +

∫

∂Ω

−→g .−→ϕ i, (3.15)

for i = 1, ..., nu and k = 1, ..., np. In the next section, we use the fast iterative
solution of stabilised Brinkman we propose method of Preconditioned Con-
jugate Residuals (PCR) for solving the big symmetric system (3.12). The
convergence of Preconditioned Conjugate Residuals is independent of h [8].

4 General block diagonal preconditioners

To solving this large systems of linear equations we use iterative methods.
All algorithms work in this way is referred to as Krylov subspace methods see
[9], this method it is the most effective methods currently available in linear
algebra system. We propose apply the preconditioned conjugate residuals
(PCR) for the Brikman equation to have a fast and robust linear solvers for
stabilized mixed approximations of this coupled system equations (2.8).
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4.1 Preconditioned conjugate residuals

Is a simpel to see that the resulting discrete Brinkman system is a saddle-
point system [6], can be expressed in this general form

(
A Bt

B −βC

)(
U

P

)
=

(
F

0

)
(4.16)

where the unknowns are the vectors U , P there are a discretized representa-
tions of ~u , p, with F taking into account the source term ~f and ~g as well as
nonhomogeneous boundary conditions. The treatment of the problem (4.16)
strongly depends on the properties of the system (2.1). In this part consid-
ers the more general class of block preconditioners [8], where the technique
corresponds to partitioning into blocks of the velocity and pressure variables.
The matrix A represents a block diagonal of discrete Laplacians, −C present
the stabilisation term omitted in the conventional (unstabilised) formulation
where β > 0 is the stabilisation parameter and the matrix B is the block
coupling between velocities and pressure. Let A is a positive definite n × n

matrix, C is a positive semi definite m×m matrix and B definite m× n. In
all practical cases n > m (see [6, Chapter 3]). Let

Ā =

(
A Bt

B −βC

)
(4.17)

the Schur complement
(
BA−lBt

)
+ βC of Ā play a crucial role to to assess

the compatibility or otherwise of the two spaces Xh and Mh. The general
positive definite preconditioner of Ā defined by

M =

(
MA 0
0 MC

)
(4.18)

where MA and MC are two symmetric positive definite matrices. Note that,
the convergence of this algorithm also determined by the values of the op-
timal minimax polynomials of increasing degree on the eigenvalues of the
symmetrically preconditioned matrix

M−
1

2 ĀM−
1

2 =

(
Ã =M

−
1

2

A AM
−

1

2

A B̃t =M
−

1

2

A BtM
−

1

2

C

B̃ =M
−

1

2

C BM
−

1

2

A −βB̃t = −βM−
1

2

C CM
−

1

2

C

)
= Ã.(4.19)

The eigenvalues of Ā is defined by

µ−m ≤ µ−m+1 ≤ ... ≤ µ−1 ≤ 0 ≤ µ1 ≤ ... ≤ µn−1 ≤ µn (4.20)
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the singular values of B̃ as

σ1 ≤ ... ≤ σm−1 ≤ σm ≤ 0 (4.21)

and the eigenvalues of the preconditioned Ã as

0 ≤ λ1 ≤ ... ≤ λn−1 ≤ λn. (4.22)

Note that, this is a slightly different approach from that used in [8]; there
the preconditioner M explicitly involved the parameter β. Now we propose
an important result is a convergence result see [8], Let rk is the residual of
the kth iterate, then

‖rk‖
‖r0‖

≤ min
p∈Π1

k

max
i

|p (µi)| = ek,

where Π1
k is the set of real polynomials of degree k satisfy p (0) = 1, and {µi}

are the eigenvalues of the preconditioned Brinkman matrix. If the eigenvalues
µi lie in inclusion intervals of the form

[−a,−bα] ∪
[
cα2, d

]
(4.23)

where a, b, c, and d are positive constants and α is an asymptotically small
positive parameter, then the asymptotic PCR convergence rate [20]

lim
k→∞

e
1

k

k = 1− α
3

2

√
bc

ad
+ 0

(
α

5

2

)
(4.24)

Proof. See [8] for the proof and further discussion of this estimate.

The number of PCR iterations required to reduce the residual by a fixed

factor is then 0
(
α

3

2

)
. The more ”standard” estimate of PCR convergence

is based on embedding a spectrum such as (4.23) in positive and negative
intervals that are of equal length. Use of Lebedev’s results [22] then gives

e
1

k

k ≤ 2

(
1−

√

b̃c̃

ãd̃

1+
√

b̃c̃

ãd̃

)2

where the spectrum is contained in
[
−ã,−b̃

]
∪
[
c̃, d̃
]
and

ã − b̃ = d̃ − c̃ > 0 (see Thmeorem. 3.2 in [25]). For a spectrum of the form
(4.23) this approach gives an estimate of the form

lim
k→∞

e
1

k

k = 1− 0
(
α2
)

The remainder of the paper is set out as follows. In the next subsection we
derive our eigenvalue bounds.
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4.2 Eigenvalue estimates

For stable finite element discretizations of the Brinkman equation in partic-
ular, for an LBB stable element (C = 0) there exists an inf-sup constant γ
such that

γ2 ≤ pt
(
BA−lBt

)
p

(ptMpp)
for all p (4.25)

where Mp is the pressure mass matrix, the boundedness of matrix B implies
the existence a constant Λ such that

pt
(
BA−lBt

)
p

ptMpp
≤ Λ2 for all p. (4.26)

Note that, only the upper bound (4.26) on the Schur complement holds
for an unstable element. another element of instability is the LBB constant
γ is zero (corresponding to ”pure” spurious pressure modes) or dependent
on the mesh size h. We assume that there exist a critical parameter value β0
independent of h, such that for all parameter values β > β0

γ2 ≤ pt
(
BA−lBt + βC

)
p

ptMpp
for all p (4.27)

with the constant γ independent of h and β, now we can derive h-independent
eigenvalue bounds in the stabilised case. This condition is an obvious exten-
sion of (4.25) to the stabilized case. Note that combining (4.27) with the
boundedness of C and B leads to the bound

γ2 ≤ pt
(
BA−lBt + βC

)
p

ptMpp
≤ Λ̃2 for all p (4.28)

for all bounded values of β > β0 and for some constant Λ̃ independent of
h. In [8], (4.28) was referred to as the (uniform-) stabilisation condition. In
this paper we aim to determine eigenvalue bounds explicitly in terms of β As
shown in the next section, this can be more conveniently done using (4.27)
and (4.26) directly in place of the combined bound (4.28). Also, as in [8], the
authors assume the existence of constants θ, Φ independent of h such that

θ2 ≤ ptMpp

ptMCp
≤ Φ2 for all p (4.29)

i.e., the diagonal block Mc is required to be spectrally equivalent to the
pressure mass matrix Mp. This condition ensures that the correct scaling is
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enforced between the velocity and pressure fields. For stable finite element
discretizations Q2 − Q1 furthermore, (4.29) is satisfied with these constant
θ = 1

2
and Φ =

√
2.

We also make use of the boundedness of C̃, i.e.,

max
p

ptC̃p

ptp
= max

q

qtCq

qtMCq
≤ ∆ (4.30)

where ∆ is a constant independent of h. In particular, ∆ = 2 for the two
specific stabilised methods considered in the next section.

For the unstabilised case, C = 0, the following result of Rusten and
Winther [18, Lemma 2.1] provides some useful eigenvalue bounds.

Lemma 4.1. For the case C = 0,

1

2

(
λ1 −

√
λ21 + 4σ2

m

)
≤ µ−m, (4.31)

µ−1 ≤
1

2

(
λn −

√
λ2n + 4σ2

1

)
, (4.32)

λ1 ≤ µ1, (4.33)

µn ≤ 1

2

(
λn −

√
λ2n + 4σ2

m

)
. (4.34)

In [18] a simple (3 × 3) example is given that shows that (4.31), (4.32),
(4.33), and (4.34) are sharp. In the uniformly stabilised case, we modify the
proof of [18] to obtain the following lemma (see also [21]).

Lemma 4.2. For the case C 6= 0 where (4.30) holds, the eigenvalues of Ã
satisfy (4.32), (4.33), (4.34), and

1

2

(
λ1 − β∆−

√
(λ1 + β∆)2 + 4σ2

m

)
≤ µ−m. (4.35)

A tighter bound that holds for stable and uniformly stabilised formula-
tions is provided by the following lemma.

Lemma 4.3.

µ−1 ≤
1

2

(
λ1 −

√
λ21 + 4γ2θ2λ1

)
. (4.36)

We now estimate σm in terms of λn.
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Lemma 4.4.
σm ≤ ΛΦ

√
µn. (4.37)

Theorem 4.5. For a stable or stabilized discrete Stokes problem (1.2) on a
quasiuniform sequence of grids, assuming (4.26) and uniform stability in the
sense of (4.25) or (4.27), and also that (4.29) and (4.30) hold, the eigenvalues
of the preconditioned matrix (4.19) lie in the union of intervals

[a1, b1] ∪ [c1, d1] (4.38)

where a1 =
1
2

(
λ1 − β∆−

√
(λ1 + β∆)2 + 4Λ2Φ2λn

)
, b1 =

1
2

(
λ1 −

√
λ21 + 4Λ2Φ2λ1

)
,

c1 = λ1, d1 =
1
2

(
λn −

√
λ2n + 4Λ2Φ2λn

)
(∆ = 0 in the stable case).

To convert the eigenvalue bounds (4.38) into estimates in terms of the
mesh size parameter h (which will approach zero under mesh refinement), we
will assume that

g (h) ≤ utAu

utMAu
≤ 1, (4.39)

or equivalently, g(h) < λ1 and λn < 1.

Theorem 4.6. For a stable or stabilised discrete Stokes problem (1.2) on
a quasiuniform sequence of grids, assuming (4.26) and uniform stability in
the sense of (4.25) or (4.27), and also that (4.29), (4.30), and (4.39) hold
with g(h) −→ 0 as h → 0, then the eigenvalues of the preconditioned matrix
(4.19) lie in the union of intervals

[a2, b2] ∪ [c2, d2] (4.40)

where a2 = −β∆
2
−
√(

β∆
2

)2
+ Λ2Φ2µn+0 (g (h)) , b2 = −γθ

√
g (h)+0 (g (h)) ,

c2 = g (h) and d2 =
1
2
+
√

1
4
+ Λ2Φ2.

Theorem 4.7. Given an unstabilized Stokes problem, that is (1.3) with C =
0, and using a preconditioner (4.18) with MA = A and MC such that (4.29)
holds, then assuming quasi-uniformity of the grid and LBB stability in the
sense of (4.25) and (4.26), the eigenvalues of the preconditioned matrix (4.19)
lie in the union of three intervals

[−b,−a] ∪ [1, 1] ∪ [1 + a, 1 + b] (4.41)

with constants

a = −1

2
+
√
1 + 4γ2θ2, b = −1

2
+
√
1 + 4Λ2Φ2

independent of the grid parameter h.
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Thus although uniform stabilization guarantees eigenvalue bounds that
are independent of h, the symmetry of the stable clusters (4.41) is not possible
if (4.25) is not satisfied.

5 A posteriori error estimators

To control the error of our problem, we propose two a posteriori error indi-
cator, the first one is local Poisson problem estimator and the second one is
residual error estimator which are equivalent to the global error estimates.
By using the coercivity of the bilinear function a(·, ·) we have this lemma

Lemma 5.1.

sup
(−→v ,q)∈V×W

a(−→w ,−→v ) + d(s, q)

‖−→v ‖V + ‖q‖W
≥ 1

2
(‖−→w ‖V + ‖s‖W ), (5.42)

for all (−→w , s) ∈ V ×W .

Proof. Let (−→w , s) ∈ V ×W , we have

sup
(−→v ,q)∈V×W

a(−→w ,−→v ) + d(s, q)

‖−→v ‖V + ‖q‖W
≥ a(−→w ,−→w ) + d(s, 0)

‖−→w ‖V + ‖0‖W
= ‖−→w ‖V , (5.43)

and we have

sup
(−→v ,q)∈V×W

a(−→w ,−→v ) + d(s, q)

‖−→v ‖V + ‖q‖W
≥ a(−→w ,−→0 ) + d(s, s)

‖−→0 ‖V + ‖s‖W
= ‖s‖W . (5.44)

We gather (5.43) and (5.44) to get (5.42).

Let (−→e , E) ∈ V ×W be the errors in the finite element approximation where
−→e = −→u − −→u h and E = p − ph. Our aim is to bound these values ‖−→e ‖V
and ‖e‖W with respect to the energy norm for the velocity ‖−→u ‖V = a(−→u ,−→u )
and the quotient norm for the pressure ‖p‖W = ‖p‖Ω,0. Let the symmetric
bilinear form

B [(−→u , p), (−→v , q)] = a(−→u ,−→v ) + b(−→v , p) + b(−→u , q)), (5.45)

with the corresponding functional F (−→v , q) = l(−→v ). Let −→u (resp −→u h) be
solution of (2.8) (resp (3.9)) the bilinear function satisfy

B [(−→e , E), (−→v , q)] = B [(−→u −−→u h, p− ph), (
−→v , q)]

= B [(−→u , p), (−→v , q)]−B [(−→u h, ph), (
−→v , q)]

= l(−→v )− a(−→u ,−→v )− b(−→v , p)− b(−→u , q)),
(5.46)
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for all (−→v , q).

The stress jump across edge or face E adjoining elements T and S defined
by

[[∇−→u h − ph
−→
I ]] = ((∇−→u h − ph

−→
I )|T − (∇−→u h − ph

−→
I )|K)−→n E,K,

where −→n E,K is the outward pointing normal.
Now, we define these important equidistributed stress jump operators defined
by

−→
R ∗

E =

{
1
2
[[∇~uh − phI]] if E ∈ εh,Ω,−→g − [A−1−→u − (∇−→u − pI)−→n )] if E ∈ εh,Γ,

(5.47)

The interior residuals defined by

−→
RK = {−→f + µ∗∇2−→u h −∇ph − µK−1−→u h}|K , (5.48)

and

RK = {∇.−→u h}|K . (5.49)

We define (
−→
φ , ψ) ∈ V ×W to be the Ritz projection of the modified residuals

a(
−→
φ ,−→v ) + d(ψ, q) = a(−→e ,−→v ) + b(−→v , E) + b(−→e , q), (5.50)

for all (−→v , q) ∈ V ×W .

Theorem 5.2. There exist positive constants K1 and K2 such that

K1(‖
−→
φ ‖2V + ‖ψ‖2W ) ≤ ‖−→u −−→u h‖2V + ‖p− ph‖2W ≤ K2(‖

−→
φ ‖2V + ‖ψ‖2W ).(5.51)

Proof. See Ainsworth, M., and Oden, J. [4].�

The local velocity space on each subdomain K ∈ P is

VK = {−→v ∈ H1(K)×H1(K) : −→v =
−→
0 on ∂Ω ∩ ∂K}, (5.52)

and the pressure space isWK = L2(K). The bilinear forms aK : VK×VK −→
R, bK : VK ×WK −→ R, and dK : WK ×WK −→ R defined by

aK(
−→u ,−→v ) =

∫

K

µ∗∇−→u .∇−→v + µK−1−→u .−→v dx+
∫

Γ∩K

A
−1−→u .−→v dΓ, (5.53)

bK(
−→v , q) = −

∫

K

(q∇.−→v )dx, dK(p, q) =

∫

K

p q dx. (5.54)



Mixed finite element method for flow of fluid in complex porous media...425

The continuous function lK : VK −→ R is defined by

lK(
−→v ) =

∫

K

−→
f .−→v dx+

∫

Γ∩K

−→g .−→v dΓ. (5.55)

Hence for −→v ,−→w ∈ V and q ∈ W we have

a(−→v ,−→w ) =
∑

K∈P

aK(
−→v K ,

−→wK), b(
−→v , q) =

∑

K∈P

bK(
−→v K , qK). (5.56)

The velocity space V (P ) =
∏

K∈P VK and the broken pressure spaceW (P ) =
{q ∈ ∏K∈P WK :

∫
Ω
q(x)dx = 0}. Examining the previous notations reveals

that

W (P ) =W. (5.57)

We consider the space of continuous linear functional τ on V (P ) × W (P )
that vanish on the space V ×W .
Therefore, let H(div,Ω) = {A ∈ L2(Ω)2×2 : div(A) ∈ L2(Ω)2}, equipped
with this norm ‖A‖H(div,Ω) = {‖A‖2

L2(Ω) + ‖divA‖2
L2(Ω)}

1

2 .

Lemma 5.3. A continuous linear functional τ on the space V (P ) ×W (P )
vanishes on the space V ×W if and only if there exists A ∈ H(div,Ω) such
that

τ [(−→v , q)] =
∑

K∈P

∮

∂K

−→n K .A.
−→v Kds. (5.58)

Proof. See Ainsworth, M., and Oden, J. [4].

It will be useful to introduce the stress like tensor σ(−→v , q) formally defined
to be

σij(
−→v , q) = ν

∂vi

∂xj
− qδij , (5.59)

Where δij is the Kronecker symbol.
In order to define the value of the normal component of the stress on the
interelement boundaries it is convenient to introduce notations for the jump
on ΓKJ :

[[−→v .σ(−→v h, qh)]] =
−→n K .σ(

−→v h,K , qh,K) +
−→n J .σ(

−→v h,J , qh,J). (5.60)

For −→v ∈ V (P ), we have

∑

K∈P

∮

∂K

−→n K .σ(
−→u h, ph).

−→v ds =
∑

ΓKJ

∫

ΓKJ

〈−→n K .σ(
−→u h, ph)〉.[[−→v ]]ds. (5.61)
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Lemma 5.4. There exists µ̂ ∈ H(div,Ω) such that

µ̂[(−→w , q)] =
∑

ΓKJ

∫

ΓKJ

〈−→n K .σ(
−→u h, qh)〉.[[−→w ]]ds, (5.62)

for all (−→w , q) ∈ V (P )×W (P ).

Proof. The right-hand side of equation (5.62) vanishes en V ×W . Applying
Lemma 5.2, we obtain (5.62).

We define the linear functional R : V (P )×W (P ) −→ R by

R[(−→w , q)] =
∑

K∈P

{lk(−→w )− aK(
−→u h,

−→w )− bK(
−→w , ph)− bK(

−→u h, q)}

+

∮

∂K

−→n K .σ(
−→u h, ph).

−→wKds− µ̂[(−→w , q)], (5.63)

for all (−→w , q) ∈ V (P )×W (P ).
For (−→w , q) ∈ V ×W , we obtain

R[(−→w , q)] = a(
−→
φ ,−→w ) + d(ψ, q). (5.64)

Let the lagrangian functional L : V (P )×W (P )×H(div,Ω) −→ R such that

L[(−→w , q), µ] = 1

2
{a(−→w ,−→w ) + d(q, q)} −R[(−→w , q)]− µ[(−→w , q)], (5.65)

So that

Supµ∈H(div,Ω)L[(
−→w , q), q] =

{
1
2
{a(−→w ,−→w ) + d(q, q)} − R[(−→w , q)] if (−→w , q) ∈ V ×W,

= + ∝ otherwise,

(5.66)
and, by using the coercivity of the bilineaire function a(·, ·) for (−→w , q) ∈
V ×W ,

1

2
{a(−→w ,−→w ) + d(q, q)} − R[(−→w , q)] =

1

2
{a(−→w −−→

φ ,−→w −−→
φ ) + d(q − ψ, q − ψ)−

a(
−→
φ ,

−→
φ )− d(ψ, ψ)}

≥ −1

2
{a(−→φ ,−→φ ) + d(ψ, ψ)} = −1

2
(‖−→φ ‖2V + ‖ψ‖2W ).
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Therefore,

−1

2
(‖−→φ ‖2V + ‖ψ‖2W ) = Inf(−→w ,q)∈V (P )×W (P )Supµ∈H(div,Ω)L[(

−→w , q), µ]
= Supµ∈H(div,Ω)Inf(−→w ,q)∈V (P )×W (P )L[(

−→w , q), µ]
≥ Inf(−→w ,q)∈V (P )×W (P )L[(

−→w , q), µ] (5.67)

=
∑

K∈P

Inf−→wK∈VK
{1
2
a(−→wK ,

−→wK)− lk(
−→wK) + aK(

−→u h,
−→wK)

+bK(
−→wK , ph)−

∮

∂K

−→n K .σ(
−→u h, ph).

−→wKds−
1

2
dK(∇.−→u h,∇.−→u h)}.

By using the inequality (5.67), we have:

Theorem 5.5. Let JK : VK → R be a quadratic functional

JK(
−→wK) =

1

2
a(−→wK ,

−→wK)− lk(
−→wK) + aK(

−→u h,
−→wK) + bK(

−→wK , ph)

−
∮

∂K

−→n K .σ(
−→u h, ph).

−→wKds. (5.68)

Then

‖−→φ ‖2V + ‖ψ‖2W ≤
∑

K∈P

{−2 inf−→wK∈VK
JK(

−→wK) + dK(∇.−→u h,K ,∇.−→u h,K)}.(5.69)

We have the problems on each subdomain inf−→wK∈VK
JK(

−→wK). Suppose

that the minimum exists and characterized by finding
−→
φ K ∈ VK

Lemma 5.6. Suppose that for each XA the constants {λ(k)KJ,A} satisfy

−
∑

J∈P

λ
(k)
KJ,Aρ

(k)
KJ,A = b

(k)
K,A, (5.70)

for k=1, 2 where

b
(k)
K,A = lK(XA

−→
θ k)− aK(

−→u h, XA

−→
θ k)− bK(XA

−→
θ k, ph)

+

∮

∂K

XA(s)〈−→n K .σ(
−→u h, ph)〉.

−→
θ kds, (5.71)

and

ρ
(k)
KJ,A =

∫

ΓKJ

[[−→n .σ(−→u h, ph)]].
−→
θ kds. (5.72)
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Then

0 = lK(
−→
θ )− aK(

−→u h,
−→
θ )− bK(

−→
θ , ph) +

∮

∂K

〈−→n K .σ(
−→u h, ph)〉.

−→
θ ds, (5.73)

for all
−→
θ ∈ Ker[a, VK ].

Proof. see [13].

New we present the important results in this section. We define the global
error estimator ηp by

ηp = (
∑

K∈P

η2K)
1

2 . (5.74)

and we have this important Theorem.

Theorem 5.7. There exists a constant C > 0 such that

‖−→u −−→u h‖2V + ‖p− ph‖2W ≤ C
∑

K∈P

η2K , (5.75)

where

ηK = {aK(
−→
φ K ,

−→
φ K) + dK(∇.−→u h,∇.−→u h)}

1

2 . (5.76)

The global residual error estimator ηr is given by

ηr = (
∑

K∈P η2r,K)
1

2 .

where ηr,K is the element contribution of the residual error estimator defined
by

η2r,K = h2K‖
−→
RK‖20,K + ‖RK‖20,K +

∑

E∈∂K

hE‖
−→
R ∗

E‖20,E, (5.77)

and his elements defined in (5.47)-(5.49). In this theorem we can shown the
equivalent between the estimators.

Theorem 5.8. The estimators ηr,K and ηK equivalent. There exist positive
constants c1 and C2 such that

c1 ηK ≤ ηr,K ≤ C2 ηK . (5.78)

Proof. See Theorem 3.9 in [8].

Theorem 5.9. There exist positive constant C ′ such that

‖−→u −−→u h‖2V + ‖p− ph‖2W ≤ C ′
∑

K∈P

η2r,K . (5.79)
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